<table>
<thead>
<tr>
<th>Question</th>
<th>Points Earned</th>
<th>Points Possible</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Bonus</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>84</td>
</tr>
</tbody>
</table>
1. Determine the number of edges, m, contained in each of the following graphs.
 (a) P_n
 (b) C_n
 (c) K_n
 (d) $K_{m,n}$
 (e) W_n
 (f) a tree with n vertices
 (g) the k-cube Q_k
 (h) N_n
2. For each part, give an example of a graph G with the desired properties. If no such graph exists, explain why not.

(a) G is Hamiltonian but not Eulerian.

(b) G is Eulerian but not Hamiltonian.

(c) G is connected, contains a cutvertex, and contains a cutset of cardinality 3.
(d) Every edge of G is a bridge, but G is not a tree.

(e) G has degree sequence $(1, 2, 3, 4, 5)$.

(f) G is a simple graph with degree sequence $(1, 3, 3, 3)$.

3. Determine a minimum weight spanning tree for the following weighted graph.

4. Determine a shortest path from A to G using the shortest path algorithm.
5. Theorem 9.1 gave five characterizations of a tree. List three of these.
Let T be a graph with n vertices. Then the following statements are equivalent:

(i) T is a tree.
(ii)
(iii)
(iv)

6. Let G be a connected graph. What can you say about

(a) an edge of G that appears in every spanning tree?

(b) an edge of G that appears in no spanning tree?
7. (a) For which \(n \) is the graph \(P_n \) bipartite? Explain your answer.

(b) For which \(n \) is the graph \(C_n \) bipartite? Explain your answer.

(c) For which \(n \) is the graph \(W_n \) bipartite? Explain your answer.

Bonus: How many spanning trees does \(K_{2,s} \) have?