Chapter 6: Colouring Graphs

17 Coloring Vertices

1. Sections 17-19: Qualitative (Can we color a graph with given colors?)
 Section 20: Quantitative (How many ways can the coloring be done?)

2. Definitions:
 - If G is a graph without loops, then G is k-colorable if we can assign one of k colors to each vertex in such a way that no two adjacent vertices have the same color.
 - If G is k-colorable but not $(k-1)$-colorable, then the chromatic number ($\chi(G)$) of G is k (G is k-chromatic).

3. Examples:
 - No upper bound on chromatic number of a general graph: $\chi(K_n) = n$.
 - $\chi(G) = 1$ if and only if G is a null graph.
 - $\chi(G) = 2$ if and only if G is a non-null bipartite graph.
 - Examples where $\chi(G) = 3$: C_n and P_n, where n is odd, Petersen graph
 - Examples where $\chi(G) = 4$: W_n, where n is even

4. Theorem If G is a simple graph with largest vertex degree Δ, then G is $(\Delta + 1)$-colorable.
 pf.
 - Induction on $|V(G)| = n$.
 - Let G be a simple graph with n vertices.
 - Delete any vertex v: $G' := G - v$ has $n - 1$ vertices and largest vertex degree at most Δ.
 - By IH, G' is $(\Delta + 1)$ colorable.
 - The vertices adjacent to v have at most Δ colors. Color v with any other color.

5. Theorem: (Brooks’ Theorem, 1941)
 If G is a simple connected graph which is not a complete graph, and if the largest vertex-degree of G is $\Delta(\geq 3)$, then G is Δ-colorable. (Proof in Section 18)

6. Both previous theorems are useful if vertex degrees are approximately the same.
 They tell little if the graph has a few vertices of large degree. (i.e.$K_{1,n}$)

7. Theorem Every simple planar graph is 6-colorable.
 pf.
 - Induction on $|V(G)| = n$. (Trivial for $n \leq 6$)
 - Let G be a simple, planar, with n vertices, and assume that all simple planar graphs with at most $n - 1$ vertices are 6-colorable.
 - By Theorem 13.6 (p. 68), G contains a vertex, v, of degree at most 5.
 - $G' := G - v$ is thus 6-colorable.
 - Color G with coloring of G' and coloring v with a color different from the (at most 5) adjacent vertices.
8. **Theorem:** Every simple planar graph is 5-colorable.

pf.

- Induction on \(|V(G)| = n\). (Trivial for \(n < 6\))
- Let \(G\) be a simple, planar, with \(n\) vertices, and assume that all simple planar graphs with at most \(n - 1\) vertices are 5-colorable.
- By Theorem 13.6 (p.68), \(G\) contains a vertex, \(v\), of degree at most 5.
- \(G' := G - v\) is thus 5-colorable.
- If \(\deg(v) < 5\), then \(v\) can be colored by any color not adjacent to \(v\).
- Assume \(\deg(v) = 5\), adjacent to vertices \(v_1, \ldots, v_5\).
- If \(v_1, \ldots, v_5\) are mutually adjacent, then \(G\) contains \(K_5\) as a subgraph, which is impossible since \(G\) is planar.
- Hence at least 2 vertices (WLOG \(v_1\) and \(v_2\)) are not adjacent.
- Contract edges \(vv_1\) and \(vv_2\). Result is planar with fewer than \(n\) vertices \(\Rightarrow\) 5-colorable.
- Now color \(v_1\) and \(v_2\) with the color originally assigned to \(v\) (w/ edges contracted).
- A 5-coloring of \(G\) is obtained by color \(v\) differently than the (at most 4) colors assigned to \(v_1, \ldots, v_5\).

9. **Theorem:** (Appel and Haken, 1976)
 Every simple planar graph is 4-colorable.

10. Example: (p. 86, pr. 17.7)
 Let \(G\) be a simple graph with \(n\) vertices, which is regular of degree \(d\). By considering the number of vertices that can be assigned the same color, prove that \(\chi(G) \geq n/(n - d)\).

11. Example: (p. 86, pr. 17.8) Let \(G\) be a simple planar graph containing no triangles.
 (a) Using Euler’s formula, show that \(G\) contains a vertex of degree at most 3.
 (b) Use induction to show that \(G\) is 4-colorable.
 (In fact, it can be proved that \(G\) is 3-colorable.)
19 Colouring Maps

1. The 4-color problem

- Whether a map can be colored with 4 colors so that no 2 adjacent countries are shown in the same color.
- Raised by Francis Gurthrie in 1852.
- Presented to the general public (London Mathematical Society) by Cayley in 1878.
- Kempe published an incorrect proof in 1879, modified by Heawood in 1890 into a proof of the five color theorem.
- First generally accepted proof by Appel and Haken in 1977 (builds on Kempe’s ideas).
 - First shows that every plane triangulation must contain at least one of 1,482 ‘unavoidable configurations.’
 - Second, a computer is used to show that each configuration is ‘reducible’, meaning that any plane triangulation containing such a configuration can be 4-colored by piecing together 4-colorings of smaller plane triangulations.
 - Together, these produce an inductive proof that all plane triangulations, and hence all planar graphs can be 4-colored.

Proof criticized, responded with 741 page long algorithmic version of their proof.

- Shorter proof more readily verifiable given by N. Robertson, D. Sanders, P.D. Seymour, and R. Thomas in 1997.

2. Definitions:

- A map is a 3-connected plane graph; it contains no cutsets with 1 or 2 edges, no vertices of degree 1 or 2.
- A map is \(k \)-colorable(f) if its faces can be colored with \(k \) colors with no adjacent faces having the same color.
- A graph is \(k \)-colorable(v) if its \(k \)-colorable, as in Section 17.

3. Theorem: Let \(G \) be a plane graph without loops, and let \(G^* \) be geometric dual of \(G \). Then \(G \) is \(k \)-colorable(v) \(\iff \) \(G^* \) is \(k \)-colorable(f).

pf. \(\Rightarrow \)

- Assume \(G \) is simple and connected \(\Rightarrow \) \(G^* \) is a map.
- Assuming we have a \(k \)-coloring(v) of \(G \), color each face of \(G^* \) with the color of the corresponding vertex in \(G \).
- No two adjacent faces of \(G^* \) have the same color because the vertices they correspond to in \(G \) are adjacent and have different colors.
- Thus, \(G^* \) is \(k \)-colorable(f).

\(\Leftarrow \)

- Suppose we have a \(k \)-coloring(f) of \(G^* \).
- \(k \)-color the vertices of \(G \) so that each vertex has the color of the face in \(G^* \) containing it.
- Again, no two adjacent vertices of \(G \) have the same color, and \(G \) is \(k \)-colorable.
4. Example: (p. 92, pr. 19.3)
Give an example of a plane graph that is both 2-colorable(f) and 2-colorable(v).

5. **Theorem:** A map G is 2-colorable(f) \iff G is an Eulerian graph.
pf. \Rightarrow For every $v \in V(G)$, even # of faces at v since covered with 2 colors.
G is Eulerian since every vertex hence has even degree.
Alternate Proof in whole:
- By Exercise 15.9, G is Eulerian $\iff G^*$ is bipartite.
- A connected graph without loops hence is 2-colorable \iff it is bipartite.

6. **Corollary:** The four-color theorem for maps is equivalent to the four-color theorem for planar graphs.
Proof in book.

7. **Theorem:** Let G be a cubic map. Then G is 3-colorable(f) \iff each face is bounded by an even number of edges.
pf. \Rightarrow
- Given any face F, the faces surrounding F must alternate in color.
- There must be an even number of them, so each face is bounded by even # of edges.
\Leftarrow
- We prove the dual result.
- Assume G is a simple connected plane graph where each face is a triangle and every vertex has even degree ($\Rightarrow G$ is Eulerian).
- We must prove that G is 3-colorable(v) with colors r, y, g.
- By Theorem, G Eulerian $\Rightarrow G$ is 2-colorable(f), with colors black and whit.
- Color any white face so that r, y, g appear in clockwise order, counter-clockwise black faces.
- Vertex coloring is extended to the whole graph.

8. **Theorem:** In order to prove the four-color theorem, it is sufficient to prove that each cubic map is 4-colorable(f).
pf.
- Corollary above implies enough to show that 4-colorability(f) of every cubic map \Rightarrow 4-colorability(f) of any map.
- Let G be a map, and assume that every cubic map is 4-colorable(f).
- Remove vertices of degree 2 without affecting coloring.
- Only remains to eliminate vertices of degree ≥ 4.
- If v has degree $n \geq 4$, then cover v with an n-gon patch.
- Repeating this process for all such vertices, we obtain a cubic map that’s 4-colorable(f) by hypothesis.
- 4-coloring of faces of G is obtained by shrinking each patch to a single vertex and reinstating each patch of degree 2.
20 Colouring Edges

1. Definitions:
 - G is k-colorable(e) (or k-edge colorable) if its edges can be colored with k colors so that no two adjacent edges have the same color.
 - The chromatic index, $\chi'(G)$ is the number k such that G is k-colorable(e) but not $(k-1)$-colorable(e).

2. Theorem (Vizing, 1964)
 If G is a simple graph with largest vertex-degree Δ, then
 $$\Delta \leq \chi'(G) \leq \Delta + 1.$$

3. Chromatic index for particular graphs:
 - $\chi'(C_{2n}) = 2$, and $\chi'(C_{2n+1}) = 3$.
 - $\chi'(W_n) = n - 1$, if $n \geq 4$.
 - Example: (p. 95, pr. 20.5) Chromatic index of Platonic graphs?

4. Theorem: $\chi'(K_n) = n$ if n is odd ($n \neq 1$), and $\chi'(K_n) = n - 1$ if n is even.
 pf.
 - Assume $n \geq 3$. (Otherwise trivial)
 - If n is odd, place the vertices as a regular n-gon.
 - Color n-cycle with a different color for each edge.
 - Color remaining edges with color of boundary edge parallel to it.
 - K_n is not $(n - 1)$-colorable(e), as the largest number of edges of the same color is $(n - 1)/2$.
 - It follows that K_n has at most $(n - 1)/2 \cdot \chi'(K_n) = (n - 1)^2/2$ edges.
 - If n is even, K_n can be built by attaching a new vertex to all vertices in K_{n-1}.
 - Color K_{n-1} as before.
 - One color is missing at each vertex, and the colors are all different.
 - Color “new” edges of K_n with the missing colors.
5. **Theorem:** The four-color theorem is equivalent to the statement that $\chi'(G) = 3$ for each cubic map G.

pf. \Rightarrow
- Since G is cubic, each vertex is surrounded by a tetrahedron.
- Assume G is 4-colored by $\alpha = (1,0)$, $\beta = (0,1)$, $\gamma = (1,1)$, and $\delta = (0,0)$.
- Construct a 3-coloring by coloring each edge e by the sum of the colors of the two adjacent faces, mod 2. (Example)
- Δ cannot occur in edge coloring as 2 faces adjacent to each edge must have different colors.
- Furthermore, no two adjacent edges can share the same color.

\Leftarrow
- Suppose we have a 3-coloring for G: α, β, γ \Rightarrow edge of each color at each vertex.
- Subgraph determined by edges of any pair of colors (i.e. α & β) is 2-regular, hence Eulerian.
- Theorem 19.1 (2-colorable \iff Eulerian) implies that we can color its faces with two colors, 0 and 1.
- Doing this for each pair of colors, each edge is assigned two colors (x, y), where each is 0 or 1.
- Since coordinates of two adjacent faces must differ in at least one place, $(1,0)$, $(0,1)$, $(1,1)$, $(0,0)$ give the required 4-coloring.

6. **Theorem:** (Kőnig 1916)
If G is a bipartite graph with largest vertex-degree Δ, then $\chi'(G) = \Delta$.
Proof in Book.

7. **Corollary:** $\chi'(K_{r,s}) = \max(r, s)$.

8. Example: (p. 95, pr. 20.7)
Prove that if G is a cubic Hamiltonian graph, then $\chi'(G) = 3$.
21 Chromatic Polynomials

1. \(P_G(k) = \# \) of ways to color the vertices of \(G \) with \(k \)-colors
 \((P_G(k) \) is the chromatic function of \(G \), soon to be chromatic polynomial.\)

2. Chromatic Functions:
 - Determine \(P_G(k) \) for paths, trees, \(K_n \), \(C_n \).
 - In each case, determine how many ways they can be colored with 5 or 6 colors.
 - Observe that if \(k < \chi(G) \), then \(P_G(k) = 0 \), and \(k \geq \chi(G) \Rightarrow P_G(k) > 0 \).

3. Theorem: Let \(G \) be a simple graph, and let \(G - e \) and \(G \setminus e \) be the graphs obtained from \(G \) by deleting and contracting \(e \). Then
 \[
 P_G(k) = P_{G-e}(k) - P_{G\setminus e}(k).
 \]
 Give an example.
 \(\text{pf. (Book includes some } G/e \text{.)} \)
 - Equivalent to showing that \(P_{G-e}(k) = P_G(k) + P_{G\setminus e}(k) \).
 - Let \(e = vw \).
 - \# of \(k \)-colorings of \(G - e \) in which \(v \) and \(w \) have different colors is unchanged if \(e \) is added \(\Rightarrow \) equals \(P_G(k) \).
 - \# of \(k \)-colorings of \(G - e \) in which \(v \) and \(w \) have the same color is unchanged if \(v \) and \(w \) are identified with each other \(\Rightarrow \) equals \(P_{G\setminus e}(k) \).
 - Thus, \(P_{G-e}(k) = P_G(k) + P_{G\setminus e}(k) \).

4. Corollary: The chromatic function of a simple graph is a polynomial.
 \(\text{pf.} \)
 - Induction on the number of edges.
 - Basis: 0 edges \(\Rightarrow P_G(k) = k^n \), where \(n \) is the number of vertices (components).
 - Assume true for graphs with \(m \) or fewer edges, and let \(G \) have \(m + 1 \) edges.
 - \(G - e \) and \(G \setminus e \) have \(m \) edges, and hence \(P_{G-e}(k) \) and \(P_{G\setminus e}(k) \) are polynomials.
 - Result follows since \(P_G(k) = P_{G-e}(k) - P_{G\setminus e}(k) \).

Note: Quickly follows that \(G \) has \(n \) vertices \(\Rightarrow P_G(k) \) is of degree \(n \), and the coefficient of \(k^n \) is 1.

5. Example: (p. 99, pr. 21.4)
 (a) Prove that the chromatic polynomial of \(K_{2,s} \) is
 \[
 k(k-1)^s + k(k-1)(k-2)^s.
 \]
 (b) Prove that the chromatic polynomial of \(C_n \) is
 \[
 (k-1)^n + (-1)^n(k-1).
 \]