Zoom: Size: Wireframe:

Select Molecule options

These options may allow selection of the entire molecule, subcomponent molecules (for example protein vs nucleic acid), or smaller molecular components (cofactors, carbohydrates, specific nitrogenous bases or amino acids, etc) of the model presented in the Jmol window.

Selecting a molecule so that it’s name heads the menu allows alteration of its appearance in the model.

A molecule can be hidden or revealed using the adjoining checkbox. Hiding a molecule will hide all components (atoms, bonds, ribbon, etc.) of the model associated with that molecule.

Display options

Display options determine how the selected molecule will be rendered in the model. The model may include atoms, bonds, a ribbon, trace, etc, which can be individually sized using the ‘Size’ buttons. The adjoining checkboxes can be used to hide or make visible different model components.

Atoms: Atoms can be rendered as solid spheres with a uniform radius in Angstroms, which together with bonds comprise a traditional ‘ball and stick’ projection. This is normally the default view. Note about hydrogen atoms: some models show hydrogen atoms but others do not.

vdW checkbox: toggles rendering of atoms between uniform diameters and percentage of the van der Waals radius of each element. The van der Waals Radius of an atom is the calculated radius when it is adjacent to but not bonded to another atom. Since the van der Waals radius of an element is related to the size of its electron cloud, elements with greater mass will have larger van der Waals radii.

Dots: This projects an array of small dots around the surface of atoms. Dots are a useful way to show a molecular surface while not obscuring other aspects of the molecular structure, such as a ball and stick rendering. If vdW is checked, the dots are drawn as a percent of the van der Waals radius.

Bonds: Covalent bonds are generally drawn as rods between the atoms. In some models single, double and triple bonds are distinguished (but this does not occur in all models).

H-bonds: The position of hydrogen bonds is calculated by the Jmol applet. This is performed between N-H and C-O groups of proteins and between nitrogenous bases of nucleic acids. Thus, not all hydrogen bonds may be rendered in a model.

Ribbon: A ribbon-like feature that follows the backbone of DNA and proteins. For nucleic acids, a ribbon will follow the sugar-phosphate linkages, and for proteins it follows the path of peptide bonds and alpha carbons. The flattened appearance of the ribbon highlights secondary structural features, such as the alpha-helices and beta-sheets of a protein.

Trace: Like a ribbon, a Trace follows the molecular backbone, but is rope-like in appearance. A Trace shows the path of the backbone while allowing other structural features to be emphasized.

IsoSurface: IsoSurface projects a surface to a molecule as it would appear to water molecules rolling along the perimeter. This is also referred to as the Sovent-excluded or Connolly surface. Follow this link for a more complete description of the rendering of molecular surfaces.

Color by options

Atoms, Ribbons and Traces can be colored to highlight structural features. Follow this link for a more complete description of colors.

Element: Atoms will be colored according to element type. The colors of the most common elements are:

H C N O P S Fe

1o Structure: different types of amino acids and nucleotides are given a unique color (according to the Jmol ‘shapely’ color scheme).

2o Structure: This differentiates regions of protein secondary structure:

α-helix β-sheet

4o Structure: This gives a different color to each peptide subunit of a multi-subunit protein and to each strand of a nucleic acid.



To Rotate the image

...around the X-axis:

Hold down the Left mouse button and drag up/down

...around the Y-axis:

Hold down the Left mouse button and drag left/right

...around the Z-axis:

Hold down the Shift-key and Right mouse button, and drag left/right

To Zoom the image (change the size)

Hold down the Shift-key and Left mouse button, and drag up/down

To Slide the image

...along the window X-axis:

Hold down the Control-key and Right mouse button, and drag left/right

...along the Y-axis:

Hold down the Control-key and Right mouse button, and drag up/down

Dept of Biology & Environmental Science

Steven R. Spilatro
© 2008